
The Java Virtual Machine 

The Java™ programming language is a high-level language developed by Sun  

Microsystems, now a wholly owned subsidiary of Oracle, Inc. 

The Java language is neither interpreted nor is it truly compiled into machine language.   

Instead, the language is compiled into a byte code form for interpretation by the JVM  

(Java Virtual Machine). 

Strictly speaking, the term “Java Virtual Machine” was created by Sun Microsystems,  

Inc. to refer to the abstract specification of a computing machine designed to run Java  

programs by executing the bytecode. 

As in many similar cases, the name is also applied to any software that actually 

implements the specification.   

Many books might make claims such as “The Java Virtual Machine (JVM) is  

the software that executes compiled Java bytecode … the name given to the machine 

language inside compiled Java programs.” 

This lecture presents a brief description of part of the JVM. 



The JVM Execution Engine 

The JVM is built around two key data structures. 

1. The local variable array, constructed as a 0-based array of 32-bit entries. 

 Note that the standard Java language array is 0-based. 

2. The operand stack, implemented as a standard LIFO (Last In First Out) stack  

 of 32-bit items. 

Unlike the Java language, the JVM uses only two basic storage types: 32-bit words  

and 64-bit double words.  Double words occupy two slots in either the operand stack  

or the local variable array. 

Values for the 8-bit, 16-bit, and 32-bit types in the Java language are stored in 32-bit  

single-word slots in either the operand stack or local variable array. 

Each variable at the Java language level is referenced at the JVM level by  

its index in the local variable array.  Interaction between the variable array and operand  

stack is handled by a number of instructions that replace push and pop. 

iload_1    // Push the integer value in storage location 1 onto the stack 

istore_2   // Pop the value off the stack and store as an integer in storage location 2. 



The ADT (Abstract Data Type) Stack 

The ADT stack is a LIFO (Last In First Out) data structure with very few operators. 

As in the JVM case, we assume that all entries on the stack are 32 bits in length. 

This brief discussion will use two of the stack operators found in the IA-32 design. 

These are the typical push and pop operators. 

PUSH X  Copy the value from address X and push it onto the stack. 

POP Y  Pop the top value from the stack and store it into address Y. 

Logically, the stack has a top onto which entries are pushed and  

from which entries are removed. 

At the implementation level, a stack is based on a stack pointer (SP or ESP for IA-32). 

The precise correlation between the SP and the address of the stack top is very  

important for the implementation, but not so much for our discussion. 

All we demand is that there is a consistent implementation. 



 

Stack Example 

We begin by assuming the following associations of values with locations. 

Location Value 

X1 1 

X2 2 

Y 0 

In this sequence, we show only that part of the stack that is directly relevant. 

   PUSH X1   ; Push the value at location X1 onto the stack. 

 

   PUSH X2   ; Push the value at location X2 onto the stack. 



 

Stack Example (Part 2) 

   POP Y   ; Pop the value from the stack and place into Y. 

   ; The value 2 is no longer a part of the stack. 

 

   PUSH X1   ; Push the value at location X1 onto the stack. 

 

Note that popping a value from the stack does not remove that from memory,  

just from the logical data structure. 

A value could be erased after popping by a sequence such as the following. 



POP  Y   ; Pop the value from the stack. 

PUSH 0   ; Overwrite its old stack location. 

POP  T   ; Then pop the zero from the stack. 



 

The JVM Operand Stack 

The JVM operand stack is handled fairly much as the abstract data type.   

Here are the key differences. 

 1. The push operation is replaced by a variety of load instructions  

  and constant instructions. 

 2. The pop operation is augmented by a variety of store operations. 

  At least one class of store instructions pops two 32-bit words from the stack. 

 3. There are a number of operations that pop two operands at a time. 

 4. There are a number of operations that pop two operands from the stack, 

  do a computation or comparison, and then push one result. 



 

The Java Basic Data Types 

The primitive data types for the JVM are those for the Java language.  Here is a table. 

Data 

Type 

Bytes Format Range 

char 2 Unicode character \u0000 to \uFFFF * 

byte 1 Signed Integer –128 to + 127 

short 2 Signed Integer – 32768 to + 32767 

int 4 Signed Integer – 2147483648 to  

+ 2147483647 

long 8 Signed Integer – (263) to 263 – 1 

float 4 IEEE Single Precision 

Float 
Magnitude: 1.4010–45 to  

3.401038, and zero 

double 8 IEEE Double 

Precision Float 
Magnitude: 4.9410–3224 to  

1.79810308, and zero 

* The character with 16–bit code 0x0000 through that with 16–bit code 0xFFFF. 

The 8-byte types (long and double) are stored in two JVM 32-bit words. 

All other Java language types are stored in one JVM 32-bit word. 



 

Double JVM Word Examples 

Consider the following two Java byte code instructions 

 dadd pop two double–precision floating point values from the stack, 

   add them, and push the result back onto the stack 

 ladd  pop two long (64 bit) signed integer values from the stack,  

   add them, and push the result back onto the stack. 

In either case, we have the following stack conditions. 

 Before After 

Top of Stack  Value1–Word1 Result–Word1 

 Value1–Word2 Result–Word2 

 Value2–Word1  

 Value2–Word1  



 Something else  

Java Bytecode 

A typical JVM instruction comprises a one-byte operation code, followed by zero to  

three bytes for the operands. 

Because each operation code occupies one byte,  

 1. The JVM language is called bytecode, and 

 2. There are a maximum of 256 simple opcodes. 

The first three classes of JVM instructions for consideration are 

 instructions to load a constant value onto the stack,  

 instructions to load a local variable value onto the stack, and 

 instructions to pop a value and store it into the local variable array. 

 



 

Loading Constant Values 

Each of the following one-byte operators pushes a different constant onto the stack. 

 

Opcode Instruction Comment 

0x02 iconst_m1 Push the integer constant –1 onto the stack. 

0x03 iconst_0  Push the integer constant 0 onto the stack 

0x04 iconst_1  Push the integer constant 1 onto the stack 

0x05 iconst_2  Push the integer constant 2 onto the stack 

0x06 iconst_3  Push the integer constant 3 onto the stack 

0x07 iconst_4  Push the integer constant 4 onto the stack 

0x08 iconst_5  Push the integer constant 5 onto the stack 

This set of constant values is a bit richer than expected. 

Specifically, the instructions to push 3, 4, and 5 are a bit of a surprise. 



 

Loading Local Variables 

There are two variants of the iload instruction. 

There are instructions to load from a general local variable array location. 

There is one instruction dedicated to each of the first four array locations. 

Here are the four one-byte dedicated load instructions.  None of these has an argument. 

Opcode Instruction Comment 

0x1A iload_0 Copy the integer in location 0 and push onto the stack. 

0x1B iload_1 Copy the integer in location 1 and push onto the stack. 

0x1C iload_2 Copy the integer in location 2 and push onto the stack. 

0x1D iload_3 Copy the integer in location 3 and push onto the stack. 

The other variant of the iload instruction has opcode 0x15.  Its appearance in byte code  

is as the 2 byte entry 0x15 NN, where NN is the hexadecimal value of the variable index.   

Thus the code 0x15 0A would be read as  

“push the value of the integer in element 10 of the variable array 

onto the stack”.  Remember that 0x0A is the hexadecimal representation of decimal 10. 



 

Storing Local Variables 

There are two variants of the istore instruction,  

 one for general indices into the local variable array and  

 one dedicated to the first four elements of this array.   

Here are the four dedicated store instructions each with its one byte opcode.   

None of these has an argument. 

Opcode Instruction  Comment 

0x3B istore_0  Pop the integer and store into location 0. 

0x3C istore_1  Pop the integer and store into location 1. 

0x3D istore_2  Pop the integer and store into location 2. 

0x3E istore_3  Pop the integer and store into location 3. 

The other variant of the istore instruction has opcode 0x36.   

Its appearance in byte code is as the 2 byte entry 0x36 NN,  

where NN is the hexadecimal value of the variable index. 



 

Sample JVM Coding 

With all of that said, here is the Java source code example. 

We shall examine its coding at the JVM bytecode level. 

   int a = 3 ; 

   int b = 2 ; 

   int sum = 0 ; 

   sum = a + b ; 

Here is the local variable table for this example.   

Note that we make the reasonable assumption that table space is reserved for  

the variables in the order in which they were declared. 

Location Index Variable stored 

0 a 

1 b 

2 sum 

What follows is the Java bytecode for the above simple source language sequence.   



In this, we add a number of comments, each in the Java style, to help the reader  

make the connection. 

Each Java language statement is now shown as a comment. 

The JVM Bytecode 

//   int a = 3 ; 

     iconst_3   // Push the constant value 3 onto the stack 

     istore_0   // Pop the value and store in location 0. 

//   int b = 2 ; 

     iconst_2   // Push the constant value 2 onto the stack 

     istore_1   // Pop the value and store in location 1 

//   int sum = 0 ; 

     iconst_0   // Push the constant value 0 onto the stack 

     istore_2   // Pop the value and store in location 2 

//   sum = a + b ; 

     iload_0    // Push value from location 0 onto stack 

     iload_1    // Push value from location 1 onto stack 

     iadd       // Pop the top two values, add them,  

                // and push the value onto the stack. 

     istore_2   // Pop the value and store in location 2. 



 

The Execution Illustrated 

//   int a = 3 ; 

     iconst_3   // Push the constant value 3 onto the stack 

 

     istore_0   // Pop the value and store in location 0. 

 



 

//   int b = 2 ; 

     iconst_2   // Push the constant value 2 onto the stack 

 

     istore_1      // Pop the value and store in location 1 

 



 

//   int sum = 0 ; 

     iconst_0   // Push the constant value 0 onto the stack 

 

     istore_2      // Pop the value and store in location 2 

 



 

//   sum = a + b ; 

     iload_0      // Push value from location 0 onto stack 

 
     iload_1      // Push value from location 1 onto stack 

 
     iadd         // Pop the top two values, add them,  

                  // and push the value onto the stack. 

 
     istore_2     // Pop the value and store in location 2. 



 

Integer Arithmetic Operators in JVM 

Opcode Instruction Comment 

0x60 iadd   Pop the top two values, add them, and  

     push the result onto the stack. 

0x64 isub   Pop the two values, subtract the top one from the second one  

     (next to top on the stack before subtraction),  

     and push the result onto stack. 

0x68 imul   Pop the two values, multiply them,  

     and push the result onto the stack. 

0x6C idiv   Pops the two values, divide the value that was second from top  

     by the value that was at the top of the stack, truncates the result  

     to the nearest integer, and pushes the result onto the stack. 



 

The Example and Its Bytecode 

Here is the original fragment of Java source code. 

   int a = 3 ; 

   int b = 2 ; 

   int sum = 0 ; 

   sum = a + b ; 

Here is the ten-byte sequence of Java bytecode that will be executed by the JVM. 

06 3B 05 3C 03 3D 1A 1B 60 3D 

 



 

The Conditional Instructions 

The JVM divides these operations into two classes: conditional branch instructions and  

comparison instruct ions.  The division between the two classes is based on operand type. 

In the JVM, the conditional each branch instructions pops one value from the stack,  

examines it, and branches accordingly.   

There are fourteen instructions in this class.  Each of these fourteen  

is a three-byte instruction, with the following form. 

Byte Type Range      Comment 

1   unsigned 1-byte integer field  0 to 255   8-bit opcode 

2, 3   signed 2-byte integer field  -32768 to 32767 branch offset 

The branch target address is computed as (pc + branch_offset),  

where pc references the address of the opcode of the branch instruction,  

and branch_offset is a 16-bit signed integer indicating the offset of the branch target. 

In the JVM, the comparison operators pop two values from the stack, compare them,  

then push a single integer onto the top of the stack to indicate the result.   

The result can then be tested by a conditional branch instruction. 



 

The Conditional Branches (Part 1) 

The first set of instructions to discuss cover the Java null object. 

Opcode Instruction Comment 
0xC6  ifnull  This pops the top item from the operand stack.  If it is a 

      reference to the special object null, the branch is taken. 

0xC7  ifnonnull  The branch is taken if the item does not reference null. 

The following twelve instructions treat each numeric value as a 32-bit signed integer.   

While the Java language supports signed integers with length of 8 bits and 16 bits,  

it appears that each of these types is extended to 32 bits when pushed onto the stack. 

Each of the instructions in the next set pops a single item off the stack, examines it as a  

32-bit integer value, and branches accordingly. 

Opcode Instruction Comment 

0x99 ifeq   jump if the value is zero 

0x9E ifle   jump if the value is zero or less than zero (not positive) 

0x9B iflt   jump if the value is less than zero (negative) 

0x9C ifge   jump if the value is zero or greater than zero (not negative) 



0x9D ifgt   jump if the value is greater than zero (positive) 

0x9A ifne   jump if the value is not zero 

Two Operand Conditional Branch Instructions 

Each of the next instructions pops two items off the stack, compares them as 32-bit  

signed integers, and branches accordingly.   

For each of these instructions, we assume that the stack  

status before the execution of the branch instruction is as follows. 

V1 the 32-bit signed integer at the top of the stack 

V2 the 32-bit signed integer next to the top of the stack. 

Opcode Instruction Comment 

0x9F if_icmpeq Branch if V1 == V2 

0xA2 if_icmpge Branch if V2 ≥ V1 

0xA3 if_icmpgt  Branch if V2 > V1 

0xA4 if_icmple  Branch if V2 ≤ V1 

0xA1 if_icmplt  Branch if V2 < V1 

0xA0 if_icmple  Branch if V1 ≠ V2 



 

Comparison Instructions 

In the JVM, the comparison operators pop two values from the stack, compare them, and  

then push a single integer onto the top of the stack to indicate the result.  Assume that,  

prior to the execution of the comparison operation; the state of the stack is as follows. 

V1_Word 1 

V1_Word 2 

V2_Word 1 

V2_Word 2 

Here is a description of the effect of this class of instructions. 

Result of 

comparison 

Value Pushed 

onto Stack 

V1 > V2 – 1 

V1 = V2 0 



V1 < V2 1 

 

Comparison Instructions (Part 2) 

Here is a list of the comparison instructions. 

Opcode Instruction Comment 

0x94 lcmp  Takes long integers from the stack (each being two words, four  

     stack entries are popped), compares them, and pushes the result. 

0x97 fcmpl  Each takes single–precision floats from the stack (two stack  

0x98 fcmpg  entries in total), compares them and pushes the result.  The  

     values +0.0 and –0.0 are treated as being equal. 

0x95 dcmpl  Each takes double–precision floats from the stack (four stack  

0x96 dcmpg  entries in total), compares them and pushes the result.  The  

     values +0.0 and –0.0 are treated as being equal. 

Note that there are two comparison operations for each floating point type.  This is based  

on how one wants to compare the IEEE standard value NaN (Not a Number, use for  

results of arithmetic operations such as 0/0).   



The fcmpl and dcmpl instructions return –1 if either value is NaN.   

The fcmpg and dcmpg instructions return 1 if either value is NaN. 

 


