
Intel Microprocessors

Leading Up to the Pentium

This lecture covers the history of the Intel microprocessor line, beginning with

the Intel 4004 and ending some time in the Pentium series.

One focus of this lecture is the fact that the designs were driven by backward

compatibility; all new chips had to run code from almost all earlier chips.

We shall pay attention to the four general–purpose registers first found

in the Intel 8086, and note how these evolved in the IA–32 architecture.

These registers are:

 AX the primary accumulator

 BX the base register for extended addressing

 CX the count register

 DX the data register

Early Intel Microprocessors

Model Introduced Clock Speed Transistor Count Address Space

4004 11/15/1971 740 kHz 2,300 @ 10 m 640 bytes

8008 4/1/1972 800 kHz 3,500 @ 10 m 16 KB

8080 4/1/1974 2 MHz 6,000 @ 6 m 64 KB

8085 March 1976 5 MHz 6,500 @ 3 m 64 KB

8086 6/8/1976 10 MHz 29,000 @ 3 m 1 MB

80286 2/1/1982 25 MHz 134,000 @ 1.5 m 16 MB

80386 10/17/1985 16 MHz 275,000 @ 1.0 m 232 bytes

80486 4/10/1989 25 MHz 1.2 million @ 1.0 m 232 bytes

Pentium 3/22/1993 66 MHz 3.1 million 232 bytes

Pentium 10/10/1994 75 MHz 3.2 million @ 0.6 m 232 bytes

Pentium 3/27/1995 120 MHz 3.2 million @ 0.6 m 232 bytes

The 80386 was the first of the IA–32 family, each of which has a 32–bit

address space, able to address 4GB = 232 bytes.

Legacy of the Intel 8008

The Intel 4004 was a 4–bit device initially designed to work in a hand–held

calculator that used BCD (4 bit encoded) decimal digits.

The Intel 8008, as the first of a set of 8–bit designs, was introduced with

no requirement for backward compatibility with the 4004.

The Intel 8008 had seven general–purpose registers (A, B, C, D, E, H, L),

each of which was an eight–bit register. We focus on four: A, B, C, and D.

The introduction of the Intel 8086 in 1976 brought with it the need to expand

these four registers to 16 bits.

The Intel 80386, introduced in 1983, required 32–bit registers.

How was this to be made compatible with code that required either 8–bit

or 16–bit registers? The answer was a design trick involving renaming.

The Three Versions of the A Register

The register renaming conventions will be illustrated for the A register found

in the Intel 8008. It was an 8–bit register.

The Intel 8086 version of the accumulator was called the AX register. It was

split into two halves: the AL and AH, each with 8 bits.

The Intel 8008 code referencing the A register would now reference the AL.

When the 80386 introduced the use of 32–bit registers, the accumulator became the

EAX register. It was divided into the AX, AH, and AL registers, each of which can

be referenced directly by assembly language instructions.

Notes on the IA–32 History

1971 Intel announces the first microprocessor, its 4004, in November 1971.

 This was a four–bit processor; BCD digits use 4 bits.

1972 An 8–bit upgrade of the 4004 is announced in April 1972. It is the 8008.

1974 The Intel 8080 processor is released in April 1974. It has a 2 MHz clock.

 It had 8–bit registers, and 8–bit data bus, and a 16–bit address bus.

 The accumulator was called the “A register”.

1978 The Intel 8086 and related 8088 processors are released. Each has 16–bit

 registers, 16–bit internal data busses, and a 20–bit address bus. Each had

 a 5MHz clock; the 8088 ran at 4.7 MHz for compatibility with the scan rate

 of a standard TV, which could be used as an output device.

 The 16–bit accumulator was called the “AX register”. It was divided into two

 smaller registers: the AH register and AL register so it could run 8080 code.

 According to Bill Gates “Who would need more than 1 megabyte of memory?”

1980 The Intel 8087 floating–point coprocessor is announced. Many of the 80x86

 series (8088, 8086, 80286, and 80386) will use a floating–point

 coprocessor on a separate chip.

IA–32 History (Part 2)

1982 The Intel 80286 was announced. It extended the address space to 24 bits,

 for an astounding 16 Megabytes allowed. (Intel should have jumped to

 32–bit addressing, but had convincing financial reasons not to do so).

 The 80286 originally had a 6 MHz clock.

 A number of innovations, now considered to be mistakes, were introduced

 with the Intel 80286. The first was a set of bizarre memory mapping options,

 which allowed larger programs to run. These were called “extended memory”

 and “expanded memory”. We are fortunate that these are now history.

 Each of these memory mapping options was based on the use of 64 kB

 segments. Unfortunately, it was hard to write code for data structures that

 crossed a segment boundary, possibly due to being larger than 64 kB.

 The other innovation was a memory protection system, allowing the CPU to

 run in one of two modes: real or protected. The only problem is that no

 software developer elected to make use of these modes.

 As a result of the requirement for backward compatibility, every IA–32

 processor since the 80286 must include this mechanism, even if it is not used.

IA–32 History (Part 3)

1983 The introduction of the Intel 80386, the first of the IA–32 family.

 This CPU had 32–bit registers, 32–bit data busses, and a 32–bit address bus.

 The 32–bit accumulator was called the “EAX register”.

 The Intel 80386 was introduced with a 16 MHz clock.

 The 80386 had three memory protection modes: protected, real, and virtual.

 We now have three protection modes that we can ignore.

1989 The introduction of the Intel 80486, a higher performance version of the

 Intel 80386. It originally had a 25 MHz clock. The 80486 DX2, introduced

 in 1993, had a 50 MHz clock.

 The 80486 had an 8KB on–chip SRAM cache, used for both instructions and

 data. The 80486 DX had an integrated FPU (Floating Point Unit)

 The 80486 was apparently the first Intel CPU to provide the specialized

 instructions required to support multiprocessing. These allow one processor

 to “claim” a memory location and prevent other processors from accessing

 that location until the value in the location had been updated.

 Your instructor recalls the 80486 as a superior version of the 80386.

IA–32 History (Part 4): The Intel 80586

The Pentium was introduced in March 1993. The design apparently had been named

the Intel 80586 for a short time, but that name was dropped.

The reason for the name change was a dispute over trade marks. Another company,

AMD (Advanced Micro Devices), had been marketing an 80486.

Before marketing the Pentium, Intel asked to trademark the name “80586”, but was

told that a number could not be given a trademark. The name was changed to

“Pentium” to prevent AMD from marketing a device with the same name.

AMD did develop and market a chip quite similar to the Pentium. It was originally

marketed as an 80586, but that name was soon dropped.

In 2000, Intel introduced the Pentium 4 (aka “Pentium IV”), which represented a

significant redesign of the original Pentium. By then, clock speeds were 2.0 GHz,

typical of that seen on present–day devices.

In 2001, Intel introduced the Itanium processor. This was the first in the IA–64

series, which supported 64–bit addressing. Conceptually, this was a radical

redesign of the Pentium, which included a larger general–purpose register set.

However, the IA–64 was still backward compatible. It would run IA–32 code,

and even the old Intel 8008 code.

Supporting Peripheral Devices: Early Decisions

As the CPU designs evolve to support wider data busses and wider address busses,

this gives rise to the possibility of supporting more sophisticated I/O devices.

These devices, widely called “peripherals”, might include hardware such as a printer,

flat–bed scanner, magnetic tape drive, removable disk, and the like.

When the Intel 80386 was introduced, there were three main design types

in common use.

The Intel 8086, with a 20–bit address bus and 16–bit data bus.

The Intel 80286, with a 24–bit address bus and 16–bit data bus.

The Intel 80386, first of the IA–32 line, with 32–bit address bus and 32–bit data bus.

The compatibility issue was very important in being able to sell new computers

to customers with installed hardware bases.

The customer might want to use an 8086–compatible device with a computer

based on the Intel 80286. Could this be done, when the busses were not compatible?

How about 8086–compatible and 80286–compatible devices with an Intel 80386?

Backward Compatibility in PC Busses

Here is a figure that shows how the PC bus grew from a 20–bit address through

a 24–bit address to a 32–bit address while retaining backward compatibility.

The requirement is that I/O components (printers, disk drives, etc.) purchased for the

Intel 8088 should be plug–compatible with both the Intel 80286 and Intel 80386.

Those purchased for the Intel 80286 should be plug–compatible with the Intel 80386.

The basic idea: You are more likely to buy a new computer if you

 can use your old peripheral devices.

Backward Compatibility in PC Busses (Part 2)

Here is a picture of the PC/AT (Intel 80286) bus, showing how the original

configuration was kept and augmented, rather than totally revised.

Note that the top slots can be used by the older 8088 cards, which do not have the

“extra long” edge connectors.

This cannot be used with cards for the Intel 80386; that would be “forward compatibility”

A Problem with Addressing

Many early computers (including the PDP–11 manufactured by the Digital Equipment

Corporation, the IBM System/360, and the Intel 8086) faced the problem of generating

an address that was larger than the number of bits allocated for the address.

Each of the PDP–11 and the Intel 8086 had the same problem and provided the

same solution.

The Intel 8086 was supposed to support a 20–bit address space, allowing 1MB to

be addressed. However, all address registers were 16–bit registers.

The answer to this problem, as we shall soon see, was to use 16–bit segment

registers as well as dedicated address registers.

Each address in this scheme would be specified by a segment register and an

offset (address) register in the form xxx:yyy, where

 xxx denotes the 16–bit value in the segment register , and

 yyy denotes the 16–bit value in the offset register.

The IBM System/360 used a similar arrangement with base registers and offsets.

We discuss that solution in the course on IBM Assembly Language.

Addressing: Segments and Offset

The Intel 8086 and later use a segmented address system in order to generate addresses

from 16–bit registers. Each of the main address registers was paired with an offset.

The IP (Instruction Pointer) register is paired with the CS (Code Segment) register.

Each of the IP and CS is a 16–bit register in the earlier designs.

NOTE: The Intel terminology is far superior to the standard name, the PC (Program

 Counter), which is so named because it does not count anything.

The SP (Stack Pointer) register is paired with the SS (Stack Segment) register.

The Intel 8086 used the segment:offset approach to generating a 20–bit address.

The steps are as follows.

 1. The 16–bit value in the segment register is treated as a 20–bit number

 with four leading binary zeroes.

 2. This 20 bit value is left shifted by four, shifting out the high order

 four 0 bits and shifting in four low order 0 bits.

 3. The 16–bit offset is expanded to a 20–bit number with four leading 0’s

 and added to the shifted segment value. The result is a 20–bit address.

Example: CS = 0x1234 and IP = 0x2004. 0x12340 + 0x02004 = 0x14344.

The Flat Address Space: Intel 80386 and Later

All computers in the IA–32 series must support the displacement:offset method of

addressing in order to run legacy code. This is “backwards compatibility”.

The native addressing mode in the IA–32 series is called a “flat address space”.

The 16–bit IP (Instruction Pointer) is now the lower order 16 bits of

the EIP (Extended Instruction Pointer), which can be used without a segment.

The 16–bit SP (Stack Pointer) is now the lower order 16 bits of

the ESP (Extended Stack Pointer), which also can be used without a segment.

This diversity of addressing modes has given rise to a variety of “memory models”

based on the addressing needed for code and data.

Memory Models: These are conventional assembly language models based on the

 size of the code and the size of the data.

 Code Size Data Size Model to Use

 Under 64 KB Under 64 KB Small or Tiny

 Over 64KB Under 64 KB Medium

 Under 64 KB Over 64 KB Compact

 Over 64 KB Over 64 KB Large

The smaller memory models give rise to code that is more compact and efficient.

The IA–32 Register Set

The IA–32 register set contains eight 32–bit registers that might be called

“general purpose”, though they retain some special functions.

These registers are: EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI.

These are the 32–bit extensions of the 16–bit registers

 AX, BX, CD, DX, SP, BP, SI, and DI.

The 16–bit segment registers are: CS, DS, SS, ES, FS and GS.

These appear to be retained only for compatibility with earlier code.

In the original Intel 8086 design, the AX register was considered as a single accumulator,

with the other registers assigned supporting roles.

It is likely that most IA–32 code maintains this distinction, though it is not required.

Instruction Lengths in the IA–32

It is here that the IA–32 architecture shows itself to be not RISC.

The IA–32 instruction set originated in the 1970’s when memory was at a premium.

During that time, one have a variety of instruction formats in order to

improve the code density and make better use of memory.

The instruction lengths commonly supported by the IA–32 architecture are

1 byte, 2 bytes, 3 bytes, 5 bytes, and 6 bytes.

This variable length considerably complicates the design of an instruction prefetch unit.

The instruction prefetch unit fetches an instruction while the previous one

is executing. This trick of fetching and execution in parallel goes back

at least to the IBM Stretch in the late 1950’s.

Instruction prefetch in RISC designs, such as the MIPS, is quite simple.

For most designs, just grab the next four bytes.

For the IA–32, the number of bytes to be prefetched as the next instruction

depends on the opcode. This makes for a more complex and slower control unit.

The IA–64 Architecture

The IA–64 architecture is a design that evolved from the Pentium 4 implementation

of the IA–32 architecture. The basic issues involve efficient handling of the

complex instruction set that has evolved over the 35 year evolution of the basic design.

We begin with a brief discussion of the Pentium 4, introduced in November, 2000.

The Pentium 4 is an implementation of the IA–32 architecture.

The limit on the clock speed of the Pentium 4 design is set by the power consumption.

The basic issue with power consumption is the heat generated. If the heat is not

removed properly, it can cause the CPU to overheat and malfunction.

The Pentium 4 is an example of a processor that uses an advanced pipelining scheme,

called “superscalar”, to execute more than one instruction per clock cycle.

The Pentium 4 converts each binary machine language instruction of the IA–32

Instruction Set Architecture into one or more micro–operations. These are stored on

the trace cache, which replaces the Level–1 Instruction Cache.

The IA–64 Architecture (Page 2)

The IA–64 architecture is the outcome of collaboration between Intel and the

Hewlett–Packard Corporation. In some sense, it is an outgrowth of the Pentium 4.

The IA–64 architecture has many features similar to RISC, but with one major exception:

it expects a sophisticated compiler to issue machine language that can be exploited

by the superscalar architecture.

The current implementations of the IA–64 are called the “Itanium” and “Itanium 2”. One

wonders if the name is based on that of the element Titanium. In any case, the geeks

soon started to call the design the “Itanic”, after the ship “Titanic”, which sank in 1912.

The Itanium was released in June 2001: the Itanium 2 in 2002.

Here are some of the features of the IA–64 design.

 1. The IA–64 has 128 integer registers and 128 floating–point registers.

 2. The IA–64 translates the binary machine language into 128–bit instruction words

 that represent up to three assembly language instructions that can be executed

 during one clock pulse. A sophisticated compile emits these 128–bit instructions

 and is responsible for handling data and control dependencies. More on this later.

 3. The design might be called “VLIW” (Very Long Instruction Word) except that

 Intel seems to prefer “EPIC” (Explicitly Parallel Instruction Computing).

Intel Hits the Power Wall

The problem is now called “the Power Wall”. It is illustrated in this figure,

taken from Patterson & Hennessy.

 The design goal for the late 1990’s and early 2000’s was to drive the clock

 rate up. This was done by adding more transistors to a smaller chip.

 Unfortunately, this increased the power dissipation of the CPU chip

 beyond the capacity of inexpensive cooling techniques.

The CPU Clock Speed Roadmap (After Some Experience)

This reflects the practical experience gained with dense chips that were literally

“hot”; they radiated considerable thermal power and were difficult to cool.

Law of Physics: All electrical power consumed is eventually radiated as heat.

References

Stanley Mazor, The History of the Microcomputer – Invention and Evolution,

Invited Paper in Readings in Computer Architecture, Morgan Kauffman, 2000.

ISBN 1 – 55860 – 539 – 8.

http://en.wikipedia.org/wiki/Intel_80486

