Two’s Complement Arithmetic

We now address the issue of representing integers as binary strings in a computer. There are four formats that have been used in the past; only one is of interest to us.

The four formats are

1. Sign–Magnitude
2. One’s–Complement
3. Two’s–Complement
4. Excess–N, where N is some positive integer; say 127 for Excess–127.

Sign–magnitude representation is obsolete.

Excess–127 representation is only used as part of floating point representations. If discussed at all, it will be in the context of the IEEE–754 standard.

We focus on Two’s–complement, but discuss one’s–complement arithmetic as a mechanism for generating the two’s complement.
Representation of Non–Negative Integers

In each of one’s–complement and two’s–complement arithmetic, no special steps are required to represent a non–negative integer.

All conversions to the complement number systems begin with conversion to simple binary representation, often from decimal notation.

The only issue with non–negative integers is to insure that the number is not too large for the number of bits used in the representation.

There are two ways to define this size limitation in the complement numbers system.

1. The most significant bit (leftmost) must be a “0” for non–negative numbers.
2. For an N–bit representation, the number must be less than $2^{N-1}$.

The biggest signed 8–bit integer is $2^7 - 1 = 127$.
The biggest signed 16–bit integer is $2^{15} - 1 = 32767$.

Three 8–bit examples: 100 = 0110 0100
22 = 0001 0110
0 = 0000 0000
Leading Zeroes Are Significant

When we talk about any number system that can represent signed integers, we must specify the number of bits used to represent the number.

Each binary representation must have that number of bits. This means padding non-negative numbers with leading zeroes.

Thus, we could say

\[
\begin{align*}
100 & = 110 \ 0100 \\
22 & = 1 \ 0110 \\
0 & = 0.
\end{align*}
\]

But, when we discuss 8–bit numbers, we MUST SAY

\[
\begin{align*}
100 & = 0110 \ 0100 \\
22 & = 0001 \ 0110 \\
0 & = 0000 \ 0000
\end{align*}
\]

The common integer sizes for signed arithmetic are 8–bit, 16–bit, and 32–bit.

I have worked with 12–bit, 18–bit, 30–bit, and 36–bit signed integers. These are of interest only for assigning problems to students.
Taking the One’s–Complement

To take the one’s complement of a binary integer, just
   Change every 0 to a 1
   Change every 1 to a 0

One’s–complement arithmetic is that arithmetic that uses the one’s–complement of
a binary integer to represent its negative.

+ 100 in 8–bit one’s complement.  0110 0100.

– 100 in 8–bit one’s complement.
   Convert 100 to 8–bit binary  0110 0100
   Take the one’s complement  1001 1011
   – 100 is represented as  1001 1011

+ 22 is 8–bit one’s complement  0001 0110

– 22 in 8–bit one’s complement
   Convert 22 to 8–bit binary  0001 0110
   Take the one’s complement  1110 1001
   – 22 is represented as  1110 1001

We no longer use one’s–complement arithmetic. It has two serious problems.
Problems with One’s–Complement Arithmetic

There are two serious problems with the use of one’s–complement arithmetic. The first one will be described but not explained.

**Problem 1:** It is a lot trickier to build a binary adder for one’s–complement numbers. Just take my word for this one.

**Problem 2:** Negative Zero

Consider 8–bit one’s–complement arithmetic

+ 0 is \(0000\ 0000\)

Take the one’s complement \(1111\ 1111\)

So – 0 is represented by \(1111\ 1111\)

Most of us are uneasy about having a distinct – 0 in our number system.

Code such as the following is considered strange.

\[
\text{if } ( (x == 0) || (x == -0) )
\]

This course will not cover one’s–complement arithmetic or use it directly for any purpose other than taking the two’s complement, discussed next.
Taking the Two’s Complement

There are two processes for taking the two’s complement of a number. The one that students find the most natural involves first taking the one’s complement and then adding 1 to that complement.

We must then cover the addition of two binary bits, specifically mentioning each of the sum bits and carry bits. The analog in decimal arithmetic is to say that the sum of 5 and 5 is 0 with a carry of 1. Yes, $5 + 5 = 10$, generating two digits from 2 one–digit numbers.

Here is the binary addition table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Sum</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Yes, $1 + 1$ is really 2. We denote this by saying that the sum $1 + 1$ carries 1 into the two’s column.

Consider $5 + 7$

$5 = \ 0101$

$7 = \ 0111$

$1100 \ \ 12$
Taking the Two’s Complement (Part 2)

The recipe for taking the two’s–complement of a binary number is simple.

1. Take the one’s–complement of the number
2. Add 1 to that complement.

+ 100 in 8–bit two’s–complement binary 0110 0100

– 100 in 8–bit two’s–complement binary
   Represent +100 as an 8–bit number 0110 0100
   Take the one’s complement 1001 1011
   Add 1
   – 100 is represented as 1001 1100

+ 22 in 8–bit two’s–complement binary 0001 0110

– 22 in 8–bit two’s–complement binary
   Represent +22 as an 8–bit number 0001 0110
   Take the one’s complement 1110 1001
   Add 1
   – 22 is represented as 1110 1010
Taking the Two’s Complement (Part 3)

+ 0 in 8–bit two’s–complement binary \(0000\ 0000\)

– 0 in 8–bit two’s–complement binary
  Represent +0 as an 8–bit number \(0000\ 0000\)
  Take the one’s complement \(1111\ 1111\)
  Add 1
  – 0 is represented as \(0000\ 0000\)
  1 Discard the high carry bit

Claim: – 1 in 8–bit two’s–complement binary is \(1111\ 1111\).

– 127 and – 128 in 8–bit two’s–complement binary.

+ 127 in 8–bit two’s–complement binary \(0111\ 1111\)

– 127 in 8–bit two’s–complement binary
  Represent +127 as an 8–bit number \(0111\ 1111\)
  Take the one’s complement \(1000\ 0000\)
  Add 1
  – 127 is represented as \(1000\ 0001\)

– 128 is “one less” than – 127, so is represented as \(1000\ 0000\)
Half Adders and Full Adders

A half adder is an adder with no “carry in”. A full adder is an adder that allows a “carry in”. For adding two binary numbers, the “carry in” is either 0 or 1.

In decimal arithmetic on integers,
- a half adder can be used for adding the units column
- a full adder would be used for adding the tens, hundreds, thousands (etc.) columns as each of these can have a “carry in” from a column to the right.

The terms “half adder” and “full adder” apply only to binary arithmetic.

A full adder can be converted to a half adder by setting its “carry in” to 0.
Example From Unsigned Integer Arithmetic

Here we add 14 (binary 01110) and 11 (binary 01011) to get 25 (binary 11001).
Truth Tables for Half Adders and Full Adders

<table>
<thead>
<tr>
<th>Half-Adder A + B</th>
<th>Full-Adder: A + B with Carry In</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>A</strong></td>
<td><strong>B</strong></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

We don’t really need a full adder to do two’s complement arithmetic, but here it is.

Back to algebra. We were taught that \(- ( - X) = X\) for all numbers. Let’s test it out for two’s–complement arithmetic.
Double Negations (Part 1)

Remember that the range of 8–bit two’s–complement arithmetic is –128 to 127.

+100 in 8–bit two’s–complement binary  0110 0100

–100 in 8–bit two’s–complement binary

  Represent +100 as an 8–bit number  0110 0100
  Take the one’s complement  1001 1011
  Add 1  1

–100 is represented as  1001 1100

+100 in 8–bit two’s–complement binary

  Represent –100 as an 8–bit number  1001 1100
  Take the one’s complement  0110 0011
  Add 1  1

–100 is represented as  0110 0100

This is the same as +100. So –(–100) is +100.
Double Negations (Part 2)

Remember that the range of 8–bit two’s–complement arithmetic is –128 to 127.

+22 in 8–bit two’s–complement binary  0001 0110

–22 in 8–bit two’s–complement binary
  Represent +22 as an 8–bit number  0001 0110
  Take the one’s complement  1110 1001
  Add 1  1

–22 is represented as  1110 1010

+22 in 8–bit two’s–complement binary
  Represent –22 as an 8–bit number  1110 1010
  Take the one’s complement  0001 0101
  Add 1  1

+22 is represented as  0001 0110

This is the same as +22. So –(–22) is +22.
Double Negations (Part 3)

Remember that the range of 8–bit two’s–complement arithmetic is – 128 to 127.

+ 127 in 8–bit two’s–complement binary

– 127 in 8–bit two’s–complement binary

Represent +127 as an 8–bit number

Take the one’s complement

Add 1

– 127 is represented as

– 128 is represented as

Take the one’s complement

Add 1

– (– 128) is represented as

– (– 128) is the same as – 128 !!

What happened? The answer is that + 128 cannot be represented in 8–bit two’s–complement arithmetic.
Standard Ranges

Here is the standard Java implementation of Two’s–Complement arithmetic. In general the range for N–bit two’s–complement arithmetic is

\[-2^{N-1} \text{ to } 2^{N-1} - 1\]

<table>
<thead>
<tr>
<th>Java Type</th>
<th>Number of Bits</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>byte</td>
<td>8</td>
<td>–128</td>
<td>127</td>
</tr>
<tr>
<td>short</td>
<td>16</td>
<td>–32768</td>
<td>32767</td>
</tr>
<tr>
<td>int</td>
<td>32</td>
<td>–2,147,483,648</td>
<td>2,147,483,647</td>
</tr>
<tr>
<td>long</td>
<td>64</td>
<td>–2^{63}</td>
<td>2^{63} – 1</td>
</tr>
</tbody>
</table>

Log_{10}(2) is about 0.30103. Log_{10}(3) is about 0.47712.

Log_{10}(2^{63}) is about 0.30103 \cdot 63 = 18.9649.

Log_{10}(9) = Log_{10}(3^2) = 2 \cdot Log_{10}(3) = 2 \cdot 0.47712 = 0.95424.

As 0.9649 > Log_{10}(9), we conclude that 2^{63} is bigger than 9 \cdot 10^{18}. 
Standard Values in N–Bit Two’s Complement Arithmetic
(With Examples for 16–bit integers)

0 is represented by N zeroes 0000 0000 0000 0000
–1 is represented by N ones 1111 1111 1111 1111
– $2^{N-1}$ is represented by a 1 followed by (N – 1) zeroes 1000 0000 0000 0000

The student should memorize these patterns and not bother with standard conversion techniques when obtaining them.

Technically speaking, the representation of $–2^{N-1}$ cannot be derived by standard means, as $2^{N-1}$ cannot be represented.
Sign Extension

In two’s complement arithmetic, the leftmost bit is the sign bit.

It is 1 for negative numbers
0 for non–negative numbers

Sign extension is the process of converting a N–bit representation to a larger format; e.g., a 16–bit number to a 32–bit number.

Example:

+ 100 in 8–bit two’s–complement binary 0110 0100
+ 100 in 16–bit two’s–complement binary 0000 0000 0110 0100

– 100 in 8–bit two’s–complement binary 1001 1100
– 100 in 16–bit two’s–complement binary 1111 1111 1001 1100

Rule – just extend the sign bit to fill the new “high order” bits.
Overflow: “Busting the Arithmetical”

The range of 16–bit two’s–complement arithmetic is

\[ -32,768 \text{ to } 32,767 \]

Consider the following addition problem: \( 24576 + 24576 \).

Now + 24,576 (binary 0110 0000 0000 0000) is well within the range.

\[
\begin{array}{c}
0110 0000 0000 0000 \\
0110 0000 0000 0000 \\
1100 0000 0000 0000 \\
\end{array}
\]

\[ 24576 \quad 24576 \quad -16384 \]

What happened?

We had a carry into the sign bit. This is “overflow”. The binary representation being used cannot handle the result.

NOTE: This works as unsigned arithmetic.

\[ 24,576 + 24,576 = 49,152 = 32768 + 16384. \]

When we design a binary adder for N–bit integers (\( N > 1 \)), we shall address the standard method for detecting overflow.
Two’s Complement vs. Taking the Two’s Complement

There is a difference between
the idea of a complement system and
the process of taking the complement.

Two’s–complement arithmetic is a system of representing integers in which the two’s-complement is used to compute the negative of an integer.

For positive integers, the method of conversion to binary differs from unsigned integers only in the requirement to use a fixed number of bits; this may give leading zeroes.

**Question:** What is the representation of the positive number 123 in 8–bit two’s complement arithmetic?

**Answer:** 0111 1011. Note that I did not take the two’s complement of anything to get this.

**Question:** What is the representation of the negative number –123 in 8–bit two’s complement arithmetic?

**Answer:** I take the two’s complement of 0111 1011 to get 1000 0101.

**Summary:** Speaking of the two’s-complement does not mean that one must take the two’s-complement of anything.
Saturation Arithmetic

Saturation arithmetic is applied to unsigned N–bit integers.

The unsigned range is 0 … $2^N - 1$.

- $N = 8$ 0 through 255
- $N = 16$ 0 through 65535
- $N = 32$ 0 through 4,294,967,295

Saturation arithmetic is commonly applied to 8–bit integers used in computer graphics.

RULES: In addition, if the sum is greater than $2^N - 1$, set it to $2^N - 1$.
In subtraction, if the number is less than 0, set it to 0.

Examples (8–bit saturation arithmetic)

- $100 + 100 = 200$
- $128 + 128 = 255$
- $128 + 127 = 255$
- $200 + 200 = 255$
- $255 + 255 = 255$

Result: Brightening a bright scene does not accidentally make it dark.