
Two’s Complement Arithmetic 
We now address the issue of representing integers as binary strings in a computer. 

There are four formats that have been used in the past; only one is of interest to us. 

The four formats are 

 1. Sign–Magnitude 

 2. One’s–Complement 

 3. Two’s–Complement 

 4. Excess–N, where N is some positive integer; say 127 for Excess–127. 

 

Sign–magnitude representation is obsolete. 

Excess–127 representation is only used as part of floating point representations. 
  If discussed at all, it will be in the context of the IEEE–754 standard. 

We focus on Two’s–complement, but discuss one’s–complement arithmetic as 
 a mechanism for generating the two’s complement. 



Representation of Non–Negative Integers 
In each of one’s–complement and two’s–complement arithmetic, no special steps 
 are required to represent a non–negative integer. 

All conversions to the complement number systems begin with conversion to simple 
 binary representation, often from decimal notation. 

The only issue with non–negative integers is to insure that the number is not too large 
 for the number of bits used in the representation. 

There are two ways to define this size limitation in the complement numbers system. 
 1. The most significant bit (leftmost) must be a “0” for non–negative numbers. 
 2. For an N–bit representation, the number must be less than 2N–1. 

The biggest signed 8–bit integer is 27 – 1 = 127. 
The biggest signed 16–bit integer is 215 – 1 = 32767. 

Three 8–bit examples: 100 = 0110 0100 
 22 = 0001 0110 
 0 = 0000 0000 



Leading Zeroes Are Significant 
When we talk about any number system that can represent signed integers, we must 
 specify the number of bits used to represent the number. 

Each binary representation must have that number of bits.  This means padding 
 non–negative numbers with leading zeroes. 

Thus, we could say 100 = 110 0100 
 22 = 1 0110 
 0 = 0. 

But, when we discuss 8–bit numbers, we MUST SAY 
 100 = 0110 0100 
 22 = 0001 0110 
 0 = 0000 0000 

The common integer sizes for signed arithmetic are 8–bit, 16–bit, and 32–bit. 

I have worked with 12–bit, 18–bit, 30–bit, and 36–bit signed integers. 
These are of interest only for assigning problems to students. 



Taking the One’s–Complement 
To take the one’s complement of a binary integer, just 
  Change every 0 to a 1 
  Change every 1 to a 0 

One’s–complement arithmetic is that arithmetic that uses the one’s–complement of 
 a binary integer to represent its negative. 

+ 100 in 8–bit one’s complement.  0110 0100. 

– 100 in 8–bit one’s complement. 
  Convert 100 to 8–bit binary 0110 0100 
  Take the one’s complement 1001 1011 
  – 100 is represented as  1001 1011 

+ 22 is 8–bit one’s complement  0001 0110 

– 22 in 8–bit one’s complement 
  Convert 22 to 8–bit binary 0001 0110 
  Take the one’s complement 1110 1001 
  – 22 is represented as  1110 1001 

We no longer use one’s–complement arithmetic.  It has two serious problems. 



Problems with One’s–Complement Arithmetic 
There are two serious problems with the use of one’s–complement arithmetic.  The first 
one will be described but not explained. 

Problem 1: It is a lot trickier to build a binary adder for one’s–complement numbers. 
   Just take my word for this one. 

Problem 2: Negative Zero 

Consider 8–bit one’s–complement arithmetic 
 + 0 is     0000 0000 
 Take the one’s complement 1111 1111 
 So – 0 is represented by  1111 1111 

Most of us are uneasy about having a distinct – 0 in our number system. 

Code such as the following is considered strange. 
  if ( ( x == 0) || (x == –0) ) 

This course will not cover one’s–complement arithmetic or use it directly for any purpose 
other than taking the two’s complement, discussed next. 



Taking the Two’s Complement 
There are two processes for taking the two’s complement of a number.  The one that 
students find the most natural involves first taking the one’s complement and then adding  
1 to that complement. 

We must then cover the addition of two binary bits, specifically mentioning each of the 
sum bits and carry bits.  The analog in decimal arithmetic is to say that the sum of 5 and 5 
is 0 with a carry of 1.  Yes, 5 + 5 = 10, generating two digits from 2 one–digit numbers. 

Here is the binary addition table 

A B Sum Carry 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

Yes, 1 + 1 is really 2.  We denote this by saying that the sum 1 + 1 carries 1 
into the two’s column. 

Consider 5 + 7  5 = 0101 
    7 = 0111 
     1100 12 



Taking the Two’s Complement (Part 2) 
The recipe for taking the two’s–complement of a binary number is simple. 

 1. Take the one’s–complement of the number 
 2. Add 1 to that complement. 

+ 100 in 8–bit two’s–complement binary  0110 0100 

– 100 in 8–bit two’s–complement binary 
 Represent +100 as an 8–bit number  0110 0100 
 Take the one’s complement    1001 1011 
 Add 1                1 
 – 100 is represented as     1001 1100 

+ 22 in 8–bit two’s–complement binary  0001 0110 

– 22 in 8–bit two’s–complement binary 
 Represent +22 as an 8–bit number   0001 0110 
 Take the one’s complement    1110 1001 
 Add 1                1 
 – 22 is represented as     1110 1010 



Taking the Two’s Complement (Part 3) 
+ 0 in 8–bit two’s–complement binary  0000 0000 

– 0 in 8–bit two’s–complement binary 
 Represent +0 as an 8–bit number  0000 0000 
 Take the one’s complement   1111 1111 
 Add 1               1 Discard the high carry bit 
 – 0 is represented as    0000 0000 

Claim: – 1 in 8–bit two’s–complement binary is 1111 1111. 

– 127 and – 128 in 8–bit two’s–complement binary. 

+ 127 in 8–bit two’s–complement binary   0111 1111 

– 127 in 8–bit two’s–complement binary 
 Represent +127 as an 8–bit number   0111 1111 
 Take the one’s complement     1000 0000 
 Add 1                 1 
 – 127 is represented as      1000 0001 

– 128 is “one less” than – 127, so is represented as 1000 0000 



Half Adders and Full Adders 

A half adder is an adder with no “carry in”.  A full adder is an adder that allows 
a “carry in”.  For adding two binary numbers, the “carry in” is either 0 or 1. 

In decimal arithmetic on integers, 
 a half adder can be used for adding the units column 
 a full adder would be used for adding the tens, hundreds, thousands (etc.) 
  columns as each of these can have a “carry in” from a column to the right. 

The terms “half adder” and “full adder” apply only to binary arithmetic. 

A full adder can be converted to a half adder by setting its “carry in” to 0. 



Example From Unsigned Integer Arithmetic 

Here we add 14 (binary 01110) and 11 (binary 01011) to get  
25 (binary 11001). 

 



Truth Tables for Half Adders and Full Adders 

      Half-Adder A + B                        Full-Adder: A + B with Carry In 
 A B Sum Carry  A B C Sum Carry 
 0 0 0 0  0 0 0 0 0 
 0 1 1 0  0 0 1 1 0 
 1 0 1 0  0 1 0 1 0 
 1 1 0 1  0 1 1 0 1 
      1 0 0 1 0 
      1 0 1 0 1 
      1 1 0 0 1 
      1 1 1 1 1 

We don’t really need a full adder to do two’s complement arithmetic, but 
 here it is. 

Back to algebra.  We were taught that – ( – X) = X for all numbers. 
  Let’s test it out for two’s–complement arithmetic. 



Double Negations (Part 1) 

Remember that the range of 8–bit two’s–complement arithmetic is – 128 to 127. 

+ 100 in 8–bit two’s–complement binary  0110 0100 

– 100 in 8–bit two’s–complement binary 
 Represent +100 as an 8–bit number  0110 0100 
 Take the one’s complement    1001 1011 
 Add 1                1 
– 100 is represented as      1001 1100 

+100 in 8–bit two’s–complement binary 
 Represent – 100 as an 8–bit number  1001 1100 
 Take the one’s complement    0110 0011 
 Add 1                1 
– 100 is represented as      0110 0100 

This is the same as + 100.  So – ( – 100) is + 100. 

 



Double Negations (Part 2) 

Remember that the range of 8–bit two’s–complement arithmetic is – 128 to 127. 

+ 22 in 8–bit two’s–complement binary  0001 0110 

– 22 in 8–bit two’s–complement binary 
 Represent +22 as an 8–bit number   0001 0110 
 Take the one’s complement    1110 1001 
 Add 1                1 
– 22 is represented as      1110 1010 

+22 in 8–bit two’s–complement binary 
 Represent – 22 as an 8–bit number   1110 1010 
 Take the one’s complement    0001 0101 
 Add 1                1 
+ 22 is represented as      0001 0110 

This is the same as + 22.  So – ( – 22) is + 22. 

 

 



Double Negations (Part 3) 

Remember that the range of 8–bit two’s–complement arithmetic is – 128 to 127. 

+ 127 in 8–bit two’s–complement binary   0111 1111 

– 127 in 8–bit two’s–complement binary 
 Represent +127 as an 8–bit number   0111 1111 
 Take the one’s complement     1000 0000 
 Add 1                 1 
– 127 is represented as       1000 0001 

– 128 is represented as       1000 0000 
  Take the one’s complement    0111 1111 
  Add 1                1 
– (– 128) is represented as      1000 0000 

– ( – 128) is the same as – 128 !! 

What happened?   The answer is that  + 128 cannot be represented in 
  8–bit two’s–complement arithmetic. 



Standard Ranges 

Here is the standard Java implementation of Two’s–Complement arithmetic. 
In general the range for N–bit two’s–complement arithmetic is 

– 2N–1 to 2N–1 – 1 

Java Type Number  
of Bits 

Lower 
Limit 

Upper 
Limit 

byte 8 – 128 127 
short 16 – 32768 32767 
int 32 – 2 147 483 648 2 147 483 647 

long 64 – 263 263 – 1 

Log10(2) is about 0.30103.  Log10(3) is about 0.47712. 

Log10(263) is about 0.30103 • 63 = 18.9649. 

Log10(9) = Log10(32) = 2•Log10(3) = 2•0.47712 = 0.95424. 

As 0.9649 > Log10(9), we conclude that 263 is bigger than 9•1018. 



Standard Values in N–Bit Two’s Complement Arithmetic 
(With Examples for 16–bit integers) 

 0 is represented by N zeroes 0000 0000 0000 0000 

 –1 is represented by N ones 1111 1111 1111 1111 

 – 2N–1 is represented by a 1  
  followed by (N – 1) zeroes 1000 0000 0000 0000 

 

The student should memorize these patterns and not bother with 
 standard conversion techniques when obtaining them. 

Technically speaking, the representation of – 2N–1 cannot be derived by 
 standard means, as 2N–1 cannot be represented. 

 



Sign Extension 

In two’s complement arithmetic, the leftmost bit is the sign bit. 

It is  1 for negative numbers 
   0 for non–negative numbers 

Sign extension is the process of converting a N–bit representation to 
 a larger format; e.g., a 16–bit number to a 32–bit number. 

Example: 

+ 100 in 8–bit two’s–complement binary 0110 0100 

+ 100 in 16–bit two’s–complement binary 0000 0000 0110 0100 

 

– 100 in 8–bit two’s–complement binary 1001 1100 

– 100 in 16–bit two’s–complement binary 1111 1111 1001 1100 

Rule – just extend the sign bit to fill the new “high order” bits. 



Overflow: “Busting the Arithmetic” 

The range of 16–bit two’s–complement arithmetic is 

– 32,768 to 32,767 

Consider the following addition problem: 24576 + 24576. 
Now + 24,576 (binary 0110 0000 0000 0000) is well within the range. 

  0110 0000 0000 0000 24576 
  0110 0000 0000 0000 24576 
  1100 0000 0000 0000 – 16384 

What happened? 

We had a carry into the sign bit.  This is “overflow”.  The binary representation 
  being used cannot handle the result. 

NOTE: This works as unsigned arithmetic. 
   24,576 + 24,576 = 49,152 = 32768 + 16384. 

When we design a binary adder for N–bit integers (N > 1), we shall address 
  the standard method for detecting overflow. 



Two’s Complement vs. Taking the Two’s Complement 

There is a difference between  
  the idea of a complement system and  
  the process of taking the complement.   

Two’s–complement arithmetic is a system of representing integers in which the two’s-
complement is used to compute the negative of an integer.   

For positive integers, the method of conversion to binary differs from unsigned integers 
only in the requirement to use a fixed number of bits; this may give leading zeroes. 

Question: What is the representation of the positive number 123 in  
 8–bit two’s complement arithmetic? 
Answer: 0111 1011.  Note that I did not take the two’s  
 complement of anything to get this. 

Question: What is the representation of the negative number –123 in  
 8–bit two’s complement arithmetic? 
Answer: I take the two’s complement of 0111 1011 to get 1000 0101. 

Summary: Speaking of the two’s-complement does not mean that one must take the 
 two’s-complement of anything. 



Saturation Arithmetic 

Saturation arithmetic is applied to unsigned N–bit integers. 

The unsigned range is 0 … 2N – 1. 

 N = 8 0 through 255 
 N = 16 0 through 65535 
 N = 32 0 through 4,294,967,295 

Saturation arithmetic is commonly applied to 8–bit integers used in 
  computer graphics. 

RULES: In addition, if the sum is greater than 2N – 1, set it to 2N – 1. 
 In subtraction, if the number is less than 0, set it to 0. 

Examples (8–bit saturation arithmetic) 

 100 + 100  = 200  128 + 128 = 255 
 128 + 127  = 255  200 + 200 = 255 
        255 + 255 = 255 

Result: Brightening a bright scene does not accidentally make it dark. 


